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ABSTRACT

An experimental investigation on hydraulic flip behavior at typical
liquid rocket injector design and operating conditions was completed.
Both nitrogen tetrcxide and water were used ¢« test fluids. The primary

test variables and the range and steps of variation for each variable were
as follows:

Orifice diameter - 0.050 in., 0.072 in., 0.110 in,
Orifice L/D -1, 2, 4, 6, 8

Chamber pressure - 0 psig, 200 psig, 400 psig, 600 psig, 800 psig

Cross-flow velocity - 0 ft/sec, 5 ft/sec, 10 ftfsel:, 15 ft/sec,
20 ft/sec

A single orifice was used in each test. The chamber pressure was simu-
lated with gaseous nitrogen. The results were analyzed to show the effect
of each primary test variable on the occurrence of hydraulic flip. Com-
parisons of experimental results with the theoretical models developed by
Ito were also made. It was concluded that chamber pressure and orifice
L/D strongly affect the occurrence of hydraulic flip while orifice diameter

and cross-flow velocity influence hydraulic flip to a much lesser degree.
The theoretical models were found to be inadequate for predicting hydrau-
lic flip. The conditions for the occurrence of flip appear nearly the same
for .both nitrogen tetroxide and water.
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NOMENCLATURE
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Cco = Contraction coefficient at vena contracta, dimensionless ‘
Ca = Orifice discharge coefficien:, dimensionless £
- E
C 14 = C, value after the occurrence of hydrzulic flip, =
dimensionless =
:
¢ -
E Cip = C4 value before the occurrence of hydraulic flip,
5. | dimensionless
- D, = Orifice diameter, in. -
3 £ = Friction factor, dimensionless
L/D = Orifice length to diameter ratio, dimeasionless =
= {L/Djcr = Critical orifice L/D below which detached flow will
‘3 occur, dimensionless =
P = Pressure, 1b/in.2 =
Pe = Chamber pressure or back pressure, b/in.2
= .. 2
= P, = Fluid vapor pressure, 1b/in.”
AP; = Orifice pressure drop reguired for hydraulic flip to
occur, 1b/in.2
= - : : . .7 w2
= A{APy) = An increment of APy, 1b/in.®
. = m. = « = _}
A AP, = Orifice pressure drop, 1b/in.*
i
AP ¢ = Orifice pressure grop at which unflipping {flow re-attachment}
wiil occur, 1b/in.“
*
Raa = Reynolds number based on diameter. dimensionless
s - , s, . o
= I = Fluid temperature, F -
£ v = i i i = = - = 3!‘
Iy = Fluid temperature at the hydraulic {lip point, F
. i s O
AT = An increment of fiuid temperature, F
Ve = Cross-flow velocity, ft/sec
n = Pressure recovery f{actor, dimensionless




SECTION I

INTRODUCTION

Past experience has shown that circular orifices with sharp-edge
inlets, such as those commonly found in liquid rocket injectors, may flow

attached or detached at their exit with corresponding changes to their

discharge coefficients of 20 percent or more. The transi§i9§4from attached

to detached flow iz called hydraulic flip. It is usually manifested in liquid

rocket engines by changes in mass and mixture ratio distributions -
(Refercnce 1) which are demonstrated causes for péiférﬁ%an?e Qegiadation,

combustion instability and off-optimum propellant utilization.

The hydraulic flip phenomenon was investigated in the past {Refer-
ences 2, 3, and 4) primarily in connection with cqg;}_mstiéri eificiency and
instability ztudies. Generally wafer was used as a pfopeilant simulant and
testing was conducted at low chamber greésﬂ;ﬁe’ or atmospheric pressure
conditions. Experimental test results did not indicate a definite link
between hydraulic flip and combustion instability, Thereiore, until
recently, the interest in hydraulic flip existed only at a very low level.
The interest was receatly intensified because .f unexpected performance
dep.adation and mixture ratio shift problems encountered with operational

liquid rocket engines. It was theorized that hydraulic flip could be the
causc of these probiems,

Originally, hydraulir flip was believed to be caused solely by fluid
cavitation resulting when the static pressure at the orifice flow vena
countracta decreased below the fluid vapor pressure. However, this
condition can be met only when the injector pressure drop exceeds a
critical value, and can occur only during engine start transients or low
chamber pressure engine operation, For this case then, it is generally
expectiec that the fluid would flow detached in the o:lflice until sufficient

chamber + - :ssure is attained to stop the cavitation anl obtain attached
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flow. Thus, hydraulic flip has never been previously considered as a
serious injector design problern., However, J. Ito (Reference 5) recently
developed a theoretical model which shows that hydraulic flip can occur in
orifices with marginal length-to-diameter (L /D) ratios, even if the static
pressure at the vena contracta is well above the fluid vapor pressure, If
this is true, hydraulic flip should be an important consideration in liquid
rocket engine design and operation.

The objectives of this investigation were to define the influence of

primary injector design and operating parameters on hydraulic flip with

emphasis on realistic chamber pressure conditions and tc check the
applicability of the theoretical models formulated by Ito.




SECTION II

TEST PROGRAM

A series of 31 test conditions, covering four test variables at four to

five incremental steps, was investigated with each of two test fluids, Both

NZO 4 and-water were tested. The test variables investigated were orifice

diameter, orifice length-to-diameter ratio (L/D), chamber pressure, and
cross-flow velocity in the propellant feed channel behind the injector face
plate, The range of variation of each test variable is typical of the range

of current interest to the Air Force, as listed in Table I,
TABLE 1. BASIC TEST MATRIX

QOrifice Diameter ) Back Pressure Cross~-Flow
(inches) Qrifice L/D (psig) Velocity (ft/sec)

0.050 2 200

0.050 200

0.050 0,400, 600,800
0,050 200
0.072,0.110 200

0.072 200

0,072 0,400,800
0.072 200

0.110 200

0.110 0,400,800
0,110 200 10,20

o~
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In addition, a short series of tests was also accomplished to check out
the validity of the experimental test set-up and to provide immediate support
to the Space and Missile Systems Organization (SAMSO) Titan III program.

The test conditions covered by this series of tests are listed in Table II.




TABLE II, SPECIAL TEST MATRIX

Orifice Diameter Back Pressure © . o-Flow
(inches) Orifice L/D (psig) Velocity ft/8s

0.072 ASME 300 0
.sharp-edge

0.072 1 800
0.072 800
0.072 800
0.072 800
0.072 100

It should be noted that no attempt wae made to condition either the

temperature of the test fluids or the temperature of the chamber pressur-

izing gas. Ambient temperature gaseous nitrogen was used exclusively for |

chamber pressure (back pressure) simuiation.
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SECTION III =

EXPERIMENTAL APPARATUS AND PROCEDURES =

TEST HARDWARE

The basic test hardwasre consisted of an injector body, a serie. of
removable orifice plates and a series of removable back plates as shown
in Figures 1, 2 and 3, respectively. The hardware was fabricated from
304 ctainless steel, In the center o1 the 2, O~inch thick injecior body,
opento the front and back faces, was a 1.0 inch by 3,73 iach rectangular
port. To prepare for each test, the front face was covered by a selected
oriiice plate to provide a specific orifice cri:nfigura'tion, while the back
face was covered by 2 selected backplate to provide a specific cross-flow
area, The i;rifice plates and backplates which were fabricated for this

program are listed in Tables III and IV,

The ability to change the cross«flow area from test to test was
required to vary the cross-~flow velocity from test to test ia investigating
the effect of cross~filow velccity on hydraulic flip. A perforated plate was
located down stream of the propellant inlet port {inside the rectangular
pert of the injector body) to provide a more uniform cross-flow velocity
behind the injector orifice plate. The original design of the plate had
three 0.1 inch x 0.4 inch rectangular flow ports, but was later substituted
with a plate having fifty 0.050 inch diameter orifices. No significant
change in the hydraulic flip test results were noted as a result of this
change, A provision for bypassing propellant out of the injector body was

also included for use in maintaining a constant cross-flow velocity for

tests during which the velocity ‘was the primary variable (see Table I).

A back pressure chamber, eight inches in diameter and fabricated out

of stainless steel, was used to simulate various chamber pressure levels.

The chamber is approximately 20 inches long and has a drainage port of
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TABLE III, INJECTOR ORIFICE PLATE SPECIFICATIONS

7 ?)x////////%

Part Number

X7047432-01 0.072
-05 .07 0,144

-11 . . 0.288

-15 . 0.432

-21 0.050

0.100

0.200

0.300

0. 400

0.110

0.220
0.440

0. 660
<0.0014




TABLE IV,

]

Part Number A B

X7047431-01 0.100" 0.168"

~03 0,200" 0.114"

0.200" 0. 150"

0.200" 0, 240"

0.200" 0, 300"

0. 500" 0. 140"

0. 500" 0.240"

-17 0.500" 0, 320"
X7047433 -—- -

approximately 3 inches in diameter at the down-stream end. In addition,

there are three small ports located along the length of the chamber,
Starting from the injector end, the first two ports are 0.172 inches in
diameter and were used for pressure pickups., The third port is

0.609 inches in diameter and was used for chamber pressurization.
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TEST SYSTEM

The test system is shown schematically in Figure 4 and photographically
in Figure 5. It is constructed entirely of stainless steel components.
Basically, it consists of three separate tanks connected to the injector/
chamber assembly through appropriate valves and tubing. The run tank
sﬁbsystem provides propellant flow to the injector. The flow rate can be
controlled either by the run tank pressure or by the cavitating venturi in
the system. The drain tank subsystem is used to maintain a gaseous
nitrogen volume at the exit of the injector orifice in the chamber during
each test run. The bypass tank subsystern is used to control the bypass
flow rate and collect the bypassed propellant. The control of bypass
flow rate during a test run was first attempted by use of a bank of several
orifice/valve components of different sizes connected in parallel, but with-
out success. This objective was subsequently fulfilled by varying the bypass
tank pressure,

As shown in Figure 4, pressure, temperature and flow rate at various
locations in the system can be monitored. Conventional instrumentation
pickups (such as tubine flow meters, tube-mounted strain gauge pressure
transducers and thermocouples) were used throughout the test program.

The propellant flow rates in the feed system as well as in the bypass system
were measured by a system of two flow meters connected in parallel to a
special valve, such that the flow could be switched from one leg of the
system to another while the run was in progress., This capability was
incorporated in the test system for cxtending the uscful range of flow

measurements.,

TEST AND DATA ACQUISITION PROCEDURES

Different test procedures were used between tests with and without
cross-flow velocity (Vc) as a controlled test variable. For tests in which

V. was not a controlled test variable, the bypass tank subsystem was

10
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isolated and not used. To conduct this type of testing, the chamber and

the drain tank were pre-pressurized together with gaseous nitrogen to a
desired pressure. The differential pressure acrouss the injector orifice
(APOE was then increased from a near zero value to a pre-selected
maximum value (usually between 500 and 100G psid) at a rate of approxi-
mately 3 psid per second., This was achieved by slowly increasing the run
- tank pressure. Once the maximum APO was attained, its value was
decreased slowly by venting the run tank slowly, Pressures, temperatures
and flow rates at locations shown in Figure 4 were recorded on digital
tapes at a scanning rate of approximately 300 samples per second for the
duration of each test run., From these data, APO and the corresponding
orifice discharge coefficient (C d} were computed and tabulated at
one second intervals, The injector orifice pressure drop value at which
hydraulic flip occurred (APf} could be easily oklained by noting a charac-

teristic shift in C g vaiues to a lower level.

gég For the test series in which Vc was a controlied test variable, the :gi
E Vc was maintained constant at a desired value throughout each test run, %
A= This was accomplished by using a cavitating venturi in conjunction with an =

appropriately selected injector back plate. As before, during each test . %

the APO was increased slowly to a desired maximum value and then

decreased slowly to zero psid. To do this, in view of the fact that the

I

total flow rate to the injector must be maintained constant to ascertain a

constant Vc, the bypass flow rate was varied accordingly. The variation

of bypassed flow rate was effected by varying the bypass tank pressure.

-t e

The procedures for the acquisition and reduction of test data were the same

as described in the preceding paragraph.

e A

The increase and decrease of APO during each test run were

originally done in a step-wise manner with a change of approximately

2 to 8 psi per step. This method proved to be very time consuming and

was later abandoned in favor of the continuous pressure ramping method.

13
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SECTION |
TEST RESULTS AND DISCUSSION
GENERAL

A total of 14] tests was conducted

in accomplishing the test program
described in Section II

Both water and nitrogen tetrexide were used as the
test fluids. These tests include those specifically for data acquisition as

well as those for system checkouts and system problems definition. A

total of 92 of these tests, 42 conducted with water and 30 conducted with

nitrogen tetroxide, produced useful data. Since the pr

imary approach for
each test run was to search for the

hydraulic flip point (&P¢) by varying the
pressure drop across the test orifice, the duration of each test was depen-

dent upon the ease of occurrence of hydraulic flip.
ranged from about 5 minutes to about 25 minutes,

Thus, the test duration

The test conditions an
results of the data producing tests are provided in Tables V and VI for

water and N204, respectively. The symbols used in these tables are

defined in the nomenclatare list. However, it should be mentioned here

that: {a) "C4 range" refars to the range of C4 values found in each run,

(b} the Reynolds Number (Rgq) is calculated based on the fluid velocity at
the vena contracta as used in Ito's model (Reference 5}, {r} "Max AP

refers to the maximum injector ressure drop value tested in the particalar
1 P ¥

run, (d) the terminology used in the remarks colurnn to describe the various
types of hydraulic flip behavior is explained in the followin

entitled "Hydraulic Fii Characteristics.
Y

g subsection

During the course of this experimental program, several side

phenomena were encountered. They are briefly described below:

a. Itwas observed that ths injection of nitrogen textroxide at low

(25 psid or lower} differential pressure across the orifice into a chamber

maintained at atmospheric pressure was unstable. This resulted in fluctu-
This phenomenon is most likely caused by erratic but

rapid vaporization of N,Oat the orifice exit under these test conditions

ating values of Cg.

D 0 g o
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b. During the early testing of the 0.050 inch diameter orifice having
a L/L of 2 at the 200 psig back pressure condition, it was found that
hydraulic flip could not be induced even by raising orifice pressure drop
as high as 850 psid. It was later found that there was a substantial number
of burrs around the inlet edge of the orifice. The burrs were subsequently .
removed and the crifice then behaved normally as hydraulic flip was
induced at conditions which were consistent with the results of other test
orifices. The influence of orifice burrs on hydraulic flip behavior was
clearly demonstrated in this case.

c. In early testing with water under atmospheric back pressure con-

dition, it was found that by momentarily blocking the flow from the outlet

side of the orifice, unflipping (transition from detached flow back to

i~
o iy

attached flow) could be induced. Lapedes (Reference 6) found that unflipping
could also be induced by striking the upstream pipe sharply with a wrench
when the orifice pressure drop value had decreased below the hydraulic flip

point.

d. An abnormal behavior was experienced with the 0,072 inch diame-
ter, L/D of 2 orifice tested at 800 psig back pressure, Flipped (detached)
flow existed at the start of the run but the flow suddenly unflipped
(re-attached) as the orifice pressure drop was increased to about 300 psid.
This behavior was later confirmed twice by repeating this set of test con-
ditions (see Table VI, test numbers 79, 80 and 90). A possible explanation

of this abnormal behavior is that, under high oack pressure conditions,

high N0, flow rate into the back pressure chamber may have caused a
dense cloud of N,0, droplets and saturated vaper to exist at and near the

orifice exit, and thus making it easy to re-wet the orifice wall. Re-wetting .

of the orifice wall is likely to enhance flow re-attachment,

i

HYDRAULIC FLIF CHARACTERISTICS

In analyzing crifice C, data as a function of APO, several distinct

types of hydraulic flip behavior were apparent (Figure 6). The {first type
20
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is termed "sharp flip, ' which is characterized by a sharp C4 transition

from a higher level to a lower level as AP, increased to the hydraulic flip

point. On decreasing AP, C4 normally flips back (unflips) to the higher

level at a lower AP transition value as depicted by the dotted line. Thus,

a classical hysteresis loop for hydraulic flip is formed. It was often .
noted, howe\;er, that the C4 remained at the lower level as AP decreased
slowly to near zero psid. In this investigation, as well as in some pre-
vious investigations (References 2 and 7), it was found that the unflip point
(APg value at which a quick transition from detached flow back to attached
flow occurs) is not predictable and not repeatable, and that the unflip point

always occurs at or below the hydraulic flip point in terms of AP value.

™

b il
R R

For lack of a better descriptive term, the second type of hydraulic
flip behavior is called "lazy flip. " It differs from sharp flip only in that

the C4 decreases steadily prior to the occurrence of hydraulic flip. For

) Lk
e

the same reason, the third type is referred to as ''reluctant flip." It is
characterized by a fluctuation of C g values within the two C d levels over a

[ 'Im .
i

range of AP prior to settling down to the jawer Cq4 level as AP increases.

The fourth type is termed ""Cq decay.” Since no sudden change in C4 level
is actually occurring, it is not a true example of hydraulic flip character-
istics, However, this steady dropoff of Cd values aa AP increased
beyond a certain value cannot be ignored. The cause and effect of different

types of hydraulic flip characteristics were not studied in this investigation.

EFFECT OF CHAMBER PRESSURE ON HYDRAULIC FLIP

The strong effect of chamber pressure on hydraulic flip is clearly
revealed in Figure 7. In this figure, the orifice pressure drop value

required for hydraulic flip to occur (APy) is plotted against orifice dia-

meter (D,) with back pressure (P_) as a parameter. All plotted data were

obtained for orifice L./D of 2 and near zero cross-flow velocity. The V_
actually ranged from about 0. 3 to about 0.7 ft/sec. The vertical length of

each data point reflects the range of uncertainty in AP;, with the longer

22
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ones reflecting the occurrence of reluctant flips. It is readily seen that at
the atmospheric P_ condition AP, is below 30 psid for each of three orifice
sizes tested. As P increased to 200 psig, the corresponding AP, increased
above 300 psid. When raising the P_ to 400 psig or higher, not a single
case of hydraulic flip was encountered even at AP _ close to 1000 psid. At
the 400 psid P c level, however, the phenomenon of C d decay was observed
in all tests regardless of orifice size. At the 600 and 800 psig Pc levels,
Cd remained fairly constant with respect to AP  variations. This absence
of Cd decay may be an indication of better flow stability with respect to the
osccurrence of hydraulic flip.

The experimental trend of APf increased with increasing P, may be
partially explained by the fact that higher AP is required to cause a fluid
entering an orifice at a higher static pressure to cavitate at the vena cc
tracta. For a given fluid flow rate through a given orifice, higher P,
would necessitate higher fluid pressure at the orifice inlet. This, however,
is not the whole story as inferred by Figure 14 in which the experimental
data are compared to a cavitation flip model. Another contributing factor
may be the possibility that higher P_ causes a denser mixture of fluid
vapor and droplets to exist at and near the orifice exit. This would likely
increase the tendency for the liquid to keep the walls of the orifice wet and

the flow attached.

The experimental evidence of P_ effects on hydraulic flip implies that
detached (flipped) flow would be likely to occur during the engine start
transient of an engine operation and flow re-attachment (unflip) would take
place as the chamber pressure increases toward its steady state value.
However, it has been observed by the authors and other investigators
(Peferences 2 and 7) that the occurrence of flow re-attachment is unpre-

dictable and often requires some induced flow disturbances.

EFFECT CF ORIFICE L/D ON HYDRAULIC FLIP

The effect of orifice L/D on hydraulic flip was experimentally investi-

gated at a constant back pressure of 200 psig and at a cross-flow velocity

24
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of approximately zero ft/sec. The result is presented in Figure 8, For
orifice 1./D of 1, recorded data showed that detached flow always existed,
although in some cases reliable data were obtained only at AP greater
than 28 psid. This indicates that the use of crifice L./D of 1 or less in
injector designs should be avoided. For orifice L/D of 2, the AP; value
increased to more than one and one-half times that of Pc --a relative value
far above that normally found in steady state liquid rocket engine operation,
For orifice L./D of 4 and greater, hydraulic flip never occurred; not even
when the AP, was increased to a value near 1090 psid. However, C, decay

was observed in all cases.

Qualitatively, the experimental trend is consistent with the cavitation
theory that the larger the orifice L/D, the higher the internal friction
losses so that higher AP _ is needed to drive the static pressure at the
vena contracta down to the fluid vapor pressure and induce flipping. How-
ever, it is apparent from Figure 14 that this theory can account for only
a very small portion of the total effect. Therefore, it is reasonable to
believe that there must be one or more other mechanisms by which hydrau-
lic flip is influenced by orifice L./D. The length limited theory advanced
by Ito (Reference 5) may account for another poriion of the total effect,

but it is still inadequate as discussed in a later subsection.

EFFECT OF CROSS-FLOW VELOCITY ON HYDRAULIC FLIP

In this area of investigation, a constant orifice L/D of 2 and a
constant P_ of 200 psig were used. The variatioa of cross-flow velocity

has only a mild effect on hydraulic flip as showr in Figures 9 and 10. The

value of AP; increases slowly with increasing V.. Increasing the V. from

zero ft/sec to 29 ft/sec (a practical range of V_ found in ope: ational liquid

rocket engines) would only increase AP; by approximately 1. percent.
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The trend of increasing APf with Vc was also noted by Northup
(Reference 2) when he experimented with water at atmospheric Pc condi-

tion using injector orifices with L/D values which ranged from 2 to 4.

L ]

bl e S L A e A

The action of cross-flow velocity is likely to force the liquid .in the
orifice to first hit against one side of the passage and then reilect toward
the opposite side. For an orifice having a moderate L/D, this action
should result in a greater tendency to keep the orifice wall wet, and thus
should increase the orifice resistance to hydraulic flip.

EFFECT OF ORIFICE DIAMETER ON HYDRAULIC FLIP

Figures 4, 8 and 10 show the effect of orifice diameter on AP; as

chamber pressure, orifice L/D and Vc were varied, respectively, Itis
seen that orifice diameter (DO) had only a mild effect on hydcaulic flip.
Increasing Dg from 0,050 inches to 0.072 inches resulted in a mild

decrease in APf. But further increase in Do to 0. 11G inches caused a

slow increase in APf. This latter trend was unexpected and seems
unreasonable. From the three figures, it is evident that the trend is con-
sistent for the various series of tests using the same o:ifices. Therefo e,
the possibility of data acquisition problems was discounted, The orifices
were subsequertly examined under a 30X microscope and found that the
inlet edge of the 0,110 °° meter orifice was much rougher., Early pro-
gram test experience h. . shown that burrs at the inlet edge of an orifice
would cause AP to increase. Although the effect of the roughened inlet

on AP, cannot be quantified, its presence along with the early experience

does lend credence to support the belief that AP; decreases mildly with

increasing orifice diameter as found with orifice sizes between 0,050 inch
and 0,072 inch diameter. This trend is in agreement with that previously
hserved by Lapedes on tests conducted with water under atmospheric

back pressure conditions (Reference 6).

P




EFFECTS OF TEST FLUID AND FLUID TEMPERATURE ON
HYDRAULIC FLIP

As shown in Figure 11, the physical properties (such as density,
viscosity and vapor pressure) of water ana NZO4 are greatly different.
However, the injector pressure drop values required for hydraulic flip
to occur are nearly thé same for these two fluids. This result is illus-
trated in Figures 7 through 10 in which the valm?s of AP, for the
two fluids are compared as injector ovifice design and operating param-
eters (such as D, L/D, V. and Pc) are varied. The lack of fluid property
effect on hydraulic flip was also noted by Northup {Reference 2) in his
experimentatior with water, alcohol and carbon tetrachloride at atmos-
pheric back pressure condition. Thus, it seems adequate to use water as

a simulant for normal (non-cryogenic} propellants in hydraulic flip testing.

As previously stated, the temperature of the test fluids was not con-
trolled. However, two NZO 4 tests repeated on different dates revealed
qualitatively that APf decreases with increasing N204 temperafuge. This
experimental evidence is shown in Figure 12. From these limited data, it
is not possible to accurately establish the rate changa of AP, with respect
to the fluid temperature, T. However, if a linear rate is assumed, the
rates would be 1.17 psig/oF and 1. 59 psig/°F for the two cases. The
fluid temperature is given for each data point in Figure 9. A straight line
is drawn through the 92°F and 93°F N204 data points for reference., Ina
qualitative sense, it can be seen that correcting the rest of the N204 data
point to 92°F or 93°F temperature would tend to reduce the data scatter. .
Undoubtedly, at least some of the data scatter encountered was due to

fluid temperature effect.
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Figure 12. Effects of NpOy
Hydraulic Flip
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COMPARISON WITH ITO'S LENGTH LIMITED HYDRAULIC FLIP MODEL

Based on the hypothesis that detached flow may occur in orifices with
insufficient /D, Ito (Reference 5} developed a model for both laminar and

turbulent boundary layer flows. The analytical expressions for this model
are:

2
1 - vCeo
Red

11.28

For laminar flow - (L/D)Cr

- -.- 1,25
1‘\/050] R
ed

For tarbulent flow ~ wioy, = |58

Where:

%/ D)cr = Critical orifice L/D below which detached flow
will occur. :

C co = Contraction coefficient at the vena contracta.

Red = Reynold's number based on orifice diameter.

This model is presented graphically in Figure 13 by two straight
lines; one for laminar flow and the other for turbulent flow. The model
predicts that the conditions below each of the lines should result in
detached flow. Experimental data points for Loth water and 1\320 4 3re
plotted in the same figure for comparison. It is obvicus that the model
is inconsistent with the experimental results. The experimental data
show no occurrence of hydraulic flip for orifices have L/D of 4 or greater
and flipped (detached) flow always prevails for orifices having L/D of 1,
Foi orifices having L/D of 2, the results are mixed., This strong L./D
effect on hydraulic flip is not adequately described by the model. The
mixed data from tests with L/D of 2 result primarily from the variation

in ¥_. The strong effect of P on hydraulic flip, as discussed earlier in

33
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this report, is totally unaccounted for by the model. Perhaps this is

the most significant deficiency of the model.

Another observation is that the model seems to over-emphasize the
dependency of hydraulic flip on Re a It has been shown earlier that,
under identical test conditions, the values of.—APf for both water and
NZO 4 are nearly the same. But in terms of R_;, at an identical AP ,
water flow has a relatively lower R'e 4 due to higher fluid viscosity. The

model incorrectly predicts less tendency for water to flow detached.

COMPARISON WITH CAVITATING FLIP THEORY

Many investigators (References 1, 4, 5 and 6) have modeled hydraulic
flip based on a fluid cavitation theoxy. A representative of these is the one

described by Ito as follows:

1 -1

ﬁPf 2 ;—f—l_)rt—g;;;: (PC - PV)

Where:

= the orifice pressure drop value required for
hydraulic flip to occur

= friction factor
= orifice length

= orifice diameter

n

chamber pressure
= vapor pressure

. {Ceo )2
= 1= Cd

= orifice discharge coefficient
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This expression is represented graphically in Figure 14 by
three groups of straight lines with each group corresponding to a dif-

ferent value of C,. The lines within each group reflect different values

of orifice L/D. The model predicts a strong influence of C qon the
occurrence of hydraulic flip. However, the predicted influence of L/D
is almost negligible. The predicted small influence of L./D is not sup-
ported by experimental data which show a very strong L/D effect. From
Figure 14 it can be seen that the experimental data reasonably follow

the theoretical trend only for L/D of 2. The C d values for most data
points are provided in the graph so that experimental evidence of C d
effect can be detected. It seems evident that the main deficiency of this
model is its inability to describe the strong influence of orifice L./D on
hydraulic flip.
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SECTION V
CONCLUSIONS AND RECOMMENDATIONS

1. Water can be used as an acceptable propellant simulant for noncryogenic

propellants in experimental hydraulic flip investigations.

2. Hydraulic flip is a strong function of orifice L/D and chamber pressure,

Increasing either of these parameters will increase the orifice pressure

drop value for hydraulic flip to occur.

3. Hydraulic flip is a mild function of cross-flow velocity and orifice

diameter. Increasing the cross-flow velocity or decreasing the orifice

diameter tend to increase the orifice pressure drop value for hydraulic

flip to occur.

4, For L/D 22 and P =z 200 psig, hydraulic flip is not expected to occur

in the range of injector pressure drop values normally found ir steady

state liquid rocket engine operation. However, the probability of hydrau-

Jlic flip occurring in the engine start transient and persisting into steady

state operation was not investigated but should be considered in practical
situations.

5. The theoretical models evaluated are inadequate for hydraulic flip

prediction. 2

6. In practical injector design considerations with respect to hydraulic .

flip, the possikle effects of the following parameters, which were not

investigated in this work, should be considered: (1) chamber gas density,

(2) orifice orientation, (3) propellant temperature, (4) injector orifice

plate temperature, (5) transient flow, and (6) injector structural

dynamics.,
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